534
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Visualisation and analysis of large-scale vortex structures in three-dimensional turbulent lid-driven cavity flow

, &
Pages 901-924 | Received 19 Aug 2013, Accepted 14 Apr 2015, Published online: 15 May 2015
 

Abstract

In this paper, large eddy simulation (LES) of a three-dimensional turbulent lid-driven cavity (LDC) flow at Re = 10,000 has been performed using the multiple relaxation time lattice Boltzmann method. A Smagorinsky eddy viscosity model was used to represent the sub-grid scale stresses with appropriate wall damping. The prediction for the flow field was first validated by comparing the velocity profiles with previous experimental and LES studies, and then subsequently used to investigate the large-scale three-dimensional vortical structures in the LDC flow. The instantaneous three-dimensional coherent structures inside the cavity were visualised using the second invariant (Q), Δ criterion, λ2 criterion, swirling strength (λci) and streamwise vorticity. The vortex structures obtained using the different criteria in general agree well with each other. However, a cleaner visualisation of the large vortex structures was achieved with the λci criterion and also when the visualisation is based on the vortex identification criteria expressed in terms of the swirling strength parameters. A major objective of the study was to perform a three-dimensional proper orthogonal decomposition (POD) on the fluctuating velocity fields. The higher energy POD modes efficiently extracted the large-scale vortical structures within the flow which were then visualised with the swirling strength criterion. Reconstruction of the instantaneous fluctuating velocity field using a finite number of POD modes indicated that the large-scale vortex structures did effectively approximate the large-scale motion. However, such a reduced order reconstruction of the flow based on the large-scale vortical structures was clearly not as effective in predicting the small-scale details of the fluctuating velocity field which relate to the turbulent transport.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Natural Science and Engineering Research Council of Canada (NSERC).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.