440
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Modulation of homogeneous shear turbulence laden with finite-size particles

&
Pages 979-1010 | Received 16 Oct 2014, Accepted 06 May 2015, Published online: 18 Jun 2015
 

Abstract

The dynamics of homogeneous shear turbulence laden with spherical finite-size particles is investigated using fully resolved numerical simulations to understand how the presence of particles modulates turbulent shear flows. We focus on a dilute flow laden with non-sedimenting particles whose diameter is slightly smaller than or comparable with those of vortex cores in turbulence. An immersed boundary method is adopted to represent a spherical finite-size particle. Numerical results show that the presence of particles augments the viscous dissipation of turbulence kinetic energy, which leads to a slower increase in the turbulence energy. Although the augmentation of energy dissipation occurs predominantly inside viscous layers surrounding particles in an initial period, the contribution from their outside becomes more significant due to the modification of turbulence structures as turbulence develops. It is found that the particles exhibit weak tendency to accumulate in vortex layers. The particles approaching and colliding with vortex layers induce large velocity fluctuations, which leads to the generation and shedding of thin vortex tubes. Newly generated vortex tubes interact with developed vortex tubes and layers, and modify the entire structure of the vorticity field.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.