273
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Conserved scalar mixing in a confined-opposed-jets flow

, , &
Pages 1139-1160 | Received 02 Feb 2015, Accepted 18 Jun 2015, Published online: 11 Sep 2015
 

Abstract

The focus of this paper is on the mixing of a conserved passive scalar for Sc = 1 (Sc is the Schmidt number) in axisymmetric turbulence for which the initial injections of turbulent kinetic energy and scalar variance are similar. Two confined-opposed-jets (COJ) are experimentally studied through simultaneous PIV (particle image velocimetry) and PLIF (planar laser induced fluorescence) measurements, for different flow regimes. One-point transport equation for the scalar variance is assessed through experimental data, along the common axis of the two opposed jets, and different physical phenomena are revealed (production, diffusion, dissipation). The production of scalar variance is equilibrated by the diffusion term (∼75%) and the mean dissipation of the scalar variance (∼25%). To further assess the scalar behaviour at each scale in this anisotropic, but axisymmetric, flow, a scale-by-scale scalar variance budget equation is derived for axisymmetric turbulence. This equation reduces to Yaglom's 4/3 law, under additional restrictions. The equation is assessed through experimental data, in the impingement region between the two COJ. In particular, the anisotropic energy transfer along different directions is quantified. It is shown that for scales smaller than the size of the central region, Δ, the cascade of the scalar variance is completely inhibited, independently of the particular direction. For scales larger than Δ, the apparent aspect of the energy transfer is that of an inverse cascade, with positive values of the scalar variance transfer. Nonetheless, inhomogeneity of the flow and mixing at those scales is directly responsible for these positive values.

Acknowledgements

Financial support from the French National Research Agency, under the projects ‘ANISO’ and ‘MUVAR’ is gratefully acknowledged. Professor P.E. Dimotakis is warmly thanked for his contribution to the initiation of this study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

French National Research Agency: Projects ANISO and MUVAR.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.