245
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Direct numerical simulations of non-helical and helical stratified turbulent flows

&
Pages 1-29 | Received 11 Jul 2014, Accepted 22 Jul 2015, Published online: 17 Oct 2015
 

ABSTRACT

Direct numerical simulations of weakly and strongly stratified decaying homogenous turbulence are conducted for two transition-to-turbulence cases with different initial conditions: the non-helical Taylor–Green vortex (TGV) and the helical Arnold–Beltrami–Childress (ABC) configurations. These simulations are carried out using a pseudo-spectral formulation with a 5123 grid resolution at varying Froude numbers, . First, an effort is made to classify the various regimes represented by and 0.08, or alternatively, buoyancy Reynolds number () values from to for non-helical and helical stably stratified turbulence. Second, various quantities including enstrophy, dissipation, vertical shearing, coherent vortical structures, density fields, energy spectra and fluxes in the different directions, and helicity are analysed to understand the effects of stratification on the development of turbulence and the turbulent structure in these different regimes. Consistent with previous studies by Riley and deBruynKops (Phys. Fluids, 2003) and Rorai et al. (Phys. Rev. E, 2013), both the TGV and ABC simulation results showed that stratification slowed down the development of turbulence. At the lowest (0.16 and 0.08) tested here, for which , the fluid motions in TGV were inhibited significantly by the strong stratification so as to eliminate the energy cascade regime and in turn, the inertial subrange. This led to an increased dissipation at the large scales in these cases as also observed in Brethouwer et al. (J. Fluid Mech., 2007). Spectral fluxes also showed an inverse energy cascade for very high stratification. Due to the nature of the ABC's initial configuration, it was observed that for the same values, its energy cascade was less inhibited in comparison to TGV and always forward as opposed to inverse for the very low- TGV cases, a behaviour that was also reflected in the different evolutions between the two flows. So compared to TGV, the large scales were more energetic in ABC for the same . In addition, horizontal velocity and density fluctuation fields of ABC simulation results, both showed the density layering effect from increased stratification.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.