287
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Effect of gap flow on the shallow wake of a sharp-edged bluff body – mean velocity fields

&
Pages 94-121 | Received 16 Mar 2015, Accepted 19 Aug 2015, Published online: 17 Oct 2015
 

ABSTRACT

This experimental study was carried out to investigate the turbulent shallow wake generated by a vertical sharp-edged flat plate suspended in a shallow channel flow with a gap near the bed. The objective of this study is to understand the effect of the gap flow on the wake by studying two different gap heights between the channel bed and the bottom edge of the bluff body. These two cases will be compared to the no-gap case which is considered as a reference case. The maximum flow velocity was 0.45 m/s and the Reynolds number based on the water depth was 45,000. Extensive measurements of the flow field in the vertical mid-plane and in the horizontal near-bed, mid-depth, and near-surface planes were made using particle image velocimetry. This paper is part of an extensive study to characterise the gap-flow effects and is primarily concerned with the mean velocity fields, while a companion paper discusses the turbulence characteristics. The size of the wake identified in the horizontal planes is found to vary in the three planes, where the gap flow enhances the entrainment in the near-wake region in the near-bed velocity field. The results also revealed that, if the gap flow is weak, it is engulfed by the recirculation zone formed just behind the bluff body whose axis is perpendicular to the vertical mid-plane. On the other hand, if the gap flow is relatively strong, it penetrates in the downstream direction and only a portion of it is diverted upward to feed the recirculation zone.

Acknowledgements

The support of the Natural Sciences and Engineering Research Council (NSERC) of Canada is gratefully acknowledged. The authors thank Arindam Singha for his role in carrying out some of the PIV measurements.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.