190
Views
3
CrossRef citations to date
0
Altmetric
Articles

Prandtl number effects in decaying homogeneous isotropic turbulence with a mean scalar gradient

ORCID Icon &
Pages 418-442 | Received 08 Nov 2016, Accepted 07 Feb 2017, Published online: 28 Feb 2017
 

ABSTRACT

Decaying homogeneous isotropic turbulence with an imposed mean scalar gradient is investigated numerically, thanks to a specific eddy-damped quasi-normal Markovian closure developed recently for passive scalar mixing in homogeneous anisotropic turbulence (BGC). The present modelling is compared successfully with recent direct numerical simulations and other models, for both very large and small Prandtl numbers. First, scalings for the cospectrum and scalar variance spectrum in the inertial range are recovered analytically and numerically. Then, at large Reynolds numbers, the decay and growth laws for the scalar variance and mixed velocity–scalar correlations, respectively, derived in BGC, are shown numerically to remain valid when the Prandtl number strongly departs from unity. Afterwards, the normalised correlation ρ wθ is found to decrease in magnitude at a fixed Reynolds number when Pr either increases or decreases, in agreement with earlier predictions. Finally, the small scales return to isotropy of the scalar second-order moments is found to depend not only on the Reynolds number, but also on the Prandtl number.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.