542
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Vortex dynamics of a trapezoidal bluff body placed inside a circular pipe

, &
Pages 1-24 | Received 26 Mar 2017, Accepted 03 Sep 2017, Published online: 15 Sep 2017
 

ABSTRACT

The influence of Reynolds number and blockage ratio on the vortex dynamics of a trapezoidal bluff body placed inside a circular pipe is studied experimentally and numerically. Low aspect ratio, high blockage ratio, curved end conditions (junction of pipe and bluff body), axisymmetric upstream flow with shear and turbulence are some of the intrinsic features of this class of bluff body flows which have been scarcely addressed in the literature. A large range (200:200,000) of Reynolds number (ReD) is covered in this study, encompassing all the three pipe flow regimes (laminar, transition and turbulent). Four different flow regimes are defined based on the distinct features of Strouhal number (St)–ReD relation: steady, laminar irregular, transition and turbulent. The wake in the steady regime is stationary with no oscillations in the shear layer. The laminar regime is termed as irregular owing to irregular vortex shedding. The vortex shedding in this regime is observed to be symmetric. The emergence of separation bubble downstream of the bluff body on either side is another interesting feature of this regime, which is further observed to be symmetric. Two pairs of mean streamwise vortices are noticed in the near-wake regime, which are termed as reverse dipole-type wake topology. Beyond the irregular laminar regime, the Strouhal number falls gradually and vortex shedding becomes more periodic. This regime is named transition and occurs close to the Reynolds number at which transition to turbulence takes place in a fully developed pipe. The turbulent regime is characterised by a nearly constant Strouhal number. Typical Karman-type vortex shedding is noticed in this regime. The convection velocity, wake width formation length and irrecoverable pressure loss are quantified to highlight the influence of blockage ratio. These results will be useful to develop basic understanding of vortex dynamics of confined bluff body flow for several practical applications.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Department of Science and Technology, India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.