236
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of form-induced velocity in rough-wall turbulent channel flows

& ORCID Icon
Pages 14-35 | Received 29 Jul 2022, Accepted 29 Sep 2022, Published online: 11 Oct 2022
 

Abstract

Wall roughness induces form-induced (or dispersive) velocity and pressure perturbations inside the roughness sublayer of a wall-bounded turbulent flow. This work discusses the role played by the form-induced velocity in influencing turbulence statistics and structure, using existing direct numerical simulation data of transient half channels in response to an impulse acceleration (Mangavelli et al. Effects of surface roughness topography in transient channel flows. J Turbul 2021;22:434–460). Focuses are given to (i) reshaping of turbulent coherent motions by the rate-of-strain of the mean velocity, and (ii) contributions of different velocity sources to turbulent pressure fluctuations. Half-channel flows in both fully-developed and non-equilibrium, transient states are discussed. Results show that form-induced velocity gradients not only form an important source of turbulent pressure in an equilibrium flow, but also lead to turbulence production and potentially direct structural change of turbulent eddies in a non-equilibrium flow under acceleration.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors gratefully acknowledge the financial support of the Office of Naval Research [award number N00014-17-1-2102].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.