160
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A surrogate non-intrusive reduced order model of quasi-geostrophic turbulence dynamics based on a combination of LSTM and different approaches of DMD

ORCID Icon, &
Pages 474-505 | Received 09 Oct 2021, Accepted 29 Sep 2023, Published online: 08 Oct 2023
 

Abstract

Mathematical modeling is applied to study phenomena and system behavior.In various engineering fields, many physical phenomena are illustrated using a set of differential equations.In many real-world applications, the mathematical models are very complex, and numerical simulations in high-dimensional systems are challenging.Examples of these problems are large-scale physical problems such as geophysical, which have high temporal and spatial variations.In these problems, model order reduction is a useful method for achieving an appropriate approximation because it can significantly decrease computational costs.Deep learning has recently been used to explore information from data and make predictions.There are several methods for dimensionality reduction.In this paper, we combine the dynamic mode decomposition (DMD) and the long short-term memory (LSTM) network.This is because LSTM can predict nonlinear systems and time series data.We use LSTM and DMD to predict nonlinear systems and reduce dimensions, respectively.Four common DMD schemes have been applied for dimensionality reduction.The common geophysical dataset has been used to evaluate the performance of the proposed method.Finally, we compare the variations of the modal coefficients which are obtained from snapshots projection and the reduced-order model.These results show the high accuracy of our proposed method.One of the things that is important is the time complexity of algorithm implementation.The time complexity of the proposed method is 10 times faster when 15 modes are used for modeling than when all features are used.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.