589
Views
41
CrossRef citations to date
0
Altmetric
Research Papers

Stochastic volatility and option pricing with long-memory in discrete and continuous time

&
Pages 635-649 | Received 01 Aug 2011, Accepted 12 Dec 2011, Published online: 22 Mar 2012
 

Abstract

It is commonly accepted that certain financial data exhibit long-range dependence. We consider a continuous-time stochastic volatility model in which the stock price is Geometric Brownian Motion with volatility described by a fractional Ornstein–Uhlenbeck process. We also study two discrete-time models: a discretization of the continuous model via a Euler scheme and a discrete model in which the returns are a zero mean i.i.d. sequence where the volatility is a fractional ARIMA process. We implement a particle filtering algorithm to estimate the empirical distribution of the unobserved volatility, which we then use in the construction of a multinomial recombining tree for option pricing. We also discuss appropriate parameter estimation techniques for each model. For the long-memory parameter we compute an implied value by calibrating the model with real data. We compare the performance of the three models using simulated data and we price options on the S&P 500 index.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 691.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.