113
Views
15
CrossRef citations to date
0
Altmetric
Review

Growth factor therapy sequesters inflammation in affording neuroprotection in cerebrovascular diseases

, , , , , & show all
Pages 915-926 | Received 11 Feb 2016, Accepted 26 Apr 2016, Published online: 13 May 2016
 

ABSTRACT

Introduction: In recent years, accumulating evidence has demonstrated the key role of inflammation in the progression of cerebrovascular diseases. Inflammation can persist over prolonged period of time after the initial insult providing a wider therapeutic window. Despite the acute endogenous upregulation of many growth factors after the injury, it is not sufficient to protect against inflammation and to regenerate the brain. Therapeutic approaches targeting both dampening inflammation and enhancing growth factors are likely to provide beneficial outcomes in cerebrovascular disease.

Areas covered: In this mini review, we discuss major growth factors and their beneficial properties to combat the inflammation in cerebrovascular diseases. Emerging biotechnologies which facilitate the therapeutic effects of growth factors are also presented in an effort to provide insights into the future combination therapies incorporating both central and peripheral abrogation of inflammation.

Expert commentary: Many studies discussed in this review have demonstrated the therapeutic effects of growth factors in treating cerebrovascular diseases. It is unlikely that one growth factor can be used to treat these complex diseases. Combination of growth factors and anti-inflammatory modulators may clinically improve outcomes for patients. In particular, transplantation of stem cells may be able to achieve both goals of modulating inflammation and upregulating growth factors. Large preclinical studies and multiple laboratory collaborations are needed to advance these findings from bench to bedside.

Declaration of interests

CV Borlongan is supported by National Institutes of Health, National Institute of Neurological Disorders and Stroke 1R01NS071956, 1R01NS090962, and 1R21NS089851, Department of Defense W81XWH-11-1-0634, James and Esther King Foundation for Biomedical Research Program, SanBio Inc, KM Pharmaceuticals, NeuralStem Inc, and Karyopharm Inc. The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsors. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 651.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.