251
Views
51
CrossRef citations to date
0
Altmetric
Research Article

Carbonic Anhydrase Inhibitors: X-ray Crystallographic Structure of the Adduct of Human Isozyme II with the Perfluorobenzoyl Analogue of Methazolamide. Implications for the Drug Design of Fluorinated Inhibitors

, , &
Pages 303-308 | Received 28 Jan 2003, Accepted 12 Mar 2003, Published online: 03 Oct 2008
 

Abstract

The X-ray crystal structure for the adduct of human carbonic anhydrase (hCA) II with 4-methyl-5-perfluorophenylcarboximido-δ2-1,3,4-thiadiazoline-2-sulfonamide (PFMZ), a topically acting antiglaucoma sulfonamide, has been resolved at a resolution of 1.8 Å. This compound is almost 10 times more effective as a hCA II inhibitor (KI of 1.5 nM) compared to the lead molecule, methazolamide, a clinically used drug (KI of 14 nM). Its binding to the enzyme active site is similar to that of other sulfonamide inhibitors, considering the interactions of the sulfonamide zinc anchoring group and thiadiazoline ring contacts, but differs considerably when the perfluorobenzoylimino fragment of the molecule is analyzed. Indeed, several unprecedented strong hydrogen bonds involving the imino nitrogen, carbonyl oxygen, a fluorine atom in the ortho position of the inhibitor, and two water molecules, as well as Gln 92 of the enzyme active site were seen. A stacking interaction of the perfluorophenyl ring of the inhibitor and the aromatic ring of Phe 131 was also observed for the first time in a CA–sulfonamide adduct. All these findings prove that more potent CA inhibitors incorporating perfluoroaryl/alkyl tails may be designed, with potentially improved antiglaucoma properties, in view of the new types of interactions seen here between the enzyme and the perfluorobenzoylated analogue of methazolamide.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.