1,791
Views
50
CrossRef citations to date
0
Altmetric
Original Articles

Identifying the optimal resistive load for complex training in male rugby players

, , &
Pages 59-70 | Published online: 08 May 2007
 

Abstract

Alternating a resistance exercise with a plyometric exercise is referred to as “complex training”. In this study, we examined the effect of various resistive loads on the biomechanics of performance of a fast stretch–shortening cycle activity to determine if an optimal resistive load exists for complex training. Twelve elite rugby players performed three drop jumps before and after three back squat resistive loads of 65%, 80%, and 93% of a single repetition maximum (1-RM) load. All drop jumps were performed on a specially constructed sledge and force platform apparatus. Flight time, ground contact time, peak ground reaction force, reactive strength index, and leg stiffness were the dependent variables. Repeated-measures analysis of variance found that all resistive loads reduced (P < 0.01) flight time, and that lifting at the 93% load resulted in an improvement (P < 0.05) in ground contact time and leg stiffness. From a training perspective, the results indicate that the heavy lifting will encourage the fast stretch–shortening cycle activity to be performed with a stiffer leg spring action, which in turn may benefit performance. However, it is unknown if these acute changes will produce any long-term adaptations to muscle function.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 212.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.