1,093
Views
13
CrossRef citations to date
0
Altmetric
Soccer

Does soccer cleat design influence the rotational interaction with the playing surface?

, , , , , & show all
Pages 293-301 | Received 30 Nov 2011, Accepted 20 Jan 2013, Published online: 01 Mar 2013
 

Abstract

Non-contact injuries in soccer players may be related to the interplay between cleat type and playing surface, and bladed shoes were often blamed for non-contact injuries with no research support. The aim of this study was to compare the rotational resistance (stiffness and peak sustainable torque) among three types of soccer cleats (metal studs, molded rubber studs, and bladed) in a controlled laboratory environment. The shoes were tested on both natural and artificial turfs under a compressive preload of 1000 N and with internal and external rotations. The three shoe models showed comparable performances with a good repeatability for each individual test on both playing surfaces. A less stiff behavior was observed for the natural turf. A tendency toward highest peak torque was observed in the studded model on natural surface. The bladed cleats provided peak torque and rotational stiffness comparable to the other models. Studded and bladed cleats did not significantly differ in their interaction with the playing surface. Therefore, soccer shoes with bladed cleats should not be banned in the context of presumed higher risk for non-contact injuries.

Acknowledgement

The authors gratefully acknowledge Miss Brandis Keller for revising the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 212.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.