1,305
Views
23
CrossRef citations to date
0
Altmetric
Tennis

The effects of surface traction characteristics on frictional demand and kinematics in tennis

, , , , &
Pages 389-402 | Received 29 Aug 2012, Accepted 08 Mar 2013, Published online: 11 Apr 2013
 

Abstract

The interaction between footwear and surfaces influences the forces experienced by tennis players. The purpose of this study was to investigate traction demand and kinematic adaptation during tennis-specific movements with changes in traction characteristics of surfaces. We hypothesised that players would increase the utilised coefficient of friction (horizontal to vertical ground reaction force ratio) when the shoe surface combination had a high coefficient of friction and flex their knee after contact to facilitate braking. Eight participants performed two separate movements, side jump out of stance and running forehand. Ground reaction force was measured and three-dimensional kinematic data were recorded. Clay surface and cushioned acrylic hard court (low vs. high shoe–surface friction) were used. The peak utilised coefficient of friction was greater on clay than the hard court. The knee was less flexed at impact on clay ( − 5.6 ± 10.2°) and at peak flexion ( − 13.1 ± 12.0°) during the running forehand. Our results indicate that tennis players adapt the level of utilised friction according to the characteristics of the surface, and this adaptation favours sliding on the low friction surface. Less knee flexion facilitates sliding on clay, whereas greater knee flexion contributes to braking on the hard court.

Acknowledgements

This project was funded by the Engineering and Physical Sciences Research Council (EPSRC). We thank the International Tennis Federation for technical assistance and valuable recommendations. We would like to thank Rebound Ace Sports® and Pavitex® for providing tested surfaces, and also Adidas for the supply of shoes.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 212.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.