1,041
Views
8
CrossRef citations to date
0
Altmetric
Jumping

The effects of a unilateral gluteal activation protocol on single leg drop jump performance

&
Pages 33-46 | Received 04 May 2013, Accepted 02 Dec 2013, Published online: 07 Feb 2014
 

Abstract

Warm-up protocols are commonly used to acutely enhance the performance of dynamic activities. This study examined the acute effect of low-load gluteal exercises on the biomechanics of single-leg drop jumps. Eight men and seven women (18–22 years old) performed 10 single-leg drop jumps on three separate days. The gluteal exercises were performed within the warm-up on day 2. Contact time, flight time, peak vertical ground reaction force (GRF), rate of force development, vertical leg-spring stiffness, and reactive strength index were determined. A repeated measures analysis of variance was used to examine differences on all variables across days. Significant differences were found for contact time, peak GRF, and flight time between days 1 and 2 and for flight time between days 1 and 3 (p ≤ 0.05) with no significant difference in any variables between days 2 and 3. This suggested that the improvements in day 2 were due to practice effects rather than the gluteal activation exercises. In addition, a typical error analysis was used to determine individual responses to the gluteal exercises. The results using this analysis showed no discernible response pattern of enhancement or fatigue for any participant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 212.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.