1,508
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Comparison of marker-less and marker-based motion capture for baseball pitching kinematics

ORCID Icon, , , , &
Received 08 Dec 2021, Accepted 06 May 2022, Published online: 19 May 2022
 

ABSTRACT

The purpose of this study was to compare baseball pitching kinematics measured with marker-less and marker-based motion capture. Two hundred and seventy-five fastball pitches were captured at 240 Hz simultaneously with a 9-camera marker-less system and a 12-camera marker system. The pitches were thrown by 30 baseball pitchers (age 17.1 ± 3.1 years). Data for each trial were time-synchronised between the two systems using the instant of ball release. Coefficients of Multiple Correlations (CMC) were computed to assess the similarity of waveforms between the two systems. Discrete measurements at foot contact, during arm cocking, and at ball release were compared between the systems using Bland-Altman plots and descriptive statistics. CMC values for the five time series analysed ranged from 0.88 to 0.97, indicating consistency in movement patterns between systems. Biases for discrete measurements ranged in magnitude from 0 to 16 degrees. Standard deviations of the differences between systems ranged from 0 to 14 degrees, while intraclass correlations ranged from 0.64 to 0.92. Thus, the marker-based and marker-less motion capture systems produced similar patterns for baseball pitching kinematics. However, based on the variations between the systems, it is recommended that a database of normative ranges be established for each system.

Acknowledgement

The authors would like to acknowledge the support of the 2020 International Society of Biomechanics in Sports Internship Grant for this project.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/14763141.2022.2076608.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 212.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.