52
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Network topology and subgap resonances observed by Fourier transform scanning tunnelling microscopy of cuprate high-temperature superconductors

Pages 3267-3281 | Received 01 Oct 2002, Accepted 01 Jun 2003, Published online: 04 Jun 2010
 

Abstract

Fourier transform scanning tunnelling microscopy (STM) on Bi2Sr2CaCu2O8+ δ (BSCCO) subgap resonances has deciphered an octet of ‘quasiparticle’ states that are consistent with the Fermi surface and energy gap observed by angle-resolved photoemission spectroscopy (ARPES), but the origin of the high-intensity k-space octets and the sharply defined r-space chequerboard is unexplained. The filamentary ferroelastic nanodomain model that predicted the r-space chequerboard also explains the k-space octets and the origin of the apparent anisotropic surface d-wave gap by using strong electron–phonon interactions outside the CuO2 planes. The topological model identifies the factors that stabilize high-intensity k-space octets in the presence of a very high level of irregular r-space chequerboard noise.

Acknowledgement

I am grateful to J. C. Davis for a preprint of the work by McElroy et al. (Citation2002) and for his patience during several clarifying discussions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.