77
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Computer simulations of the fission process of charged nanometre droplets

&
Pages 157-171 | Received 28 Nov 2002, Accepted 15 Sep 2003, Published online: 21 Feb 2007
 

Abstract

The process of fission of charged liquid droplets is an important stage of multiply charged ion formation in the electrospray ionization (ESI) process. ESI is currently the most powerful ionization method in the mass spectrometry of large molecules such as biopolymers. Fission plays a crucial role in the ion formation essentially in the range of nanosized droplets, since it determines the charge states of product ions. Usually the Rayleigh equation is used to determine critical conditions, at which the fission process takes place. This equation gives the value of the critical radius of the charged droplet as a function of its charge and specific surface energy. The Rayleigh equation does not give us the opportunity to determine charges and sizes of the fission fragments. In the present work we propose a mathematical model that describes the fission process of the charged liquid droplet in an external electrostatic field. The model is based on the quasi-equilibrium assumption that the most probable shape of the droplet corresponds to the minimum of the free energy of the system. The change in the internal kinetic energy and dissipative losses for the viscous liquid are also taken into account in the model.

Acknowledgments

The authors wish to express their gratitude for support from the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union (grant RC1-2055), The International Association for the Promotion of Cooperation with Scientists from the Independent States of the Former Soviet Union (INTAS) (grant 99-00478) and the Russian Foundation for Basic Research (grant 02-03-32301-a).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.