371
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Solidification mechanisms of unmodified and strontium-modified hypereutectic aluminium–silicon alloys

, &
Pages 1683-1696 | Received 12 Aug 2003, Accepted 28 Nov 2003, Published online: 21 Aug 2006
 

Abstract

The effects of strontium on the solidification mode of hypereutectic aluminium–silicon alloys have been studied. Samples were prepared from an aluminium–17 wt% silicon-based alloy and strontium was added at several different concentrations. The development of the microstructure was investigated by cooling curve analysis, interrupted solidification experiments and optical and scanning electron microscopy. It was found that nucleation of primary silicon is suppressed by additions of strontium. The suppressed nucleation results in supersaturation of the liquid prior to nucleation, and an increased growth rate after nucleation. As a result, the silicon crystals become less faceted and more dendritic with increasing strontium additions. Increasing the strontium concentration slightly refined the eutectic spacing and introduced a small amount of fibrous silicon. Electron back-scatter diffraction measurements were performed to determine the crystallographic relation between the primary and eutectic silicon phases. The eutectic silicon in the unmodified alloy does not have any crystallographic relationship with the primary silicon crystals. In contrast, the eutectic silicon crystals in the strontium-modified alloys often share an identical or twin relationship with nearby primary silicon crystals. The incidence of twinning within primary silicon crystals was relatively low and did not appear to increase with strontium additions.

Acknowledgements

This research is, in part, sponsored by a University of Queensland (UQ) Foundation Research Excellence Award and the UQ Postdoctoral Research Fellowships Scheme. Elkem Silicon is gratefully acknowledged for supplying the silicon used in this research.

Notes

† The depression of the nucleation temperature is much larger than any inaccuracies in the temperature measurements.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.