109
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Crack growth in a piezoelectric material with a Griffith crack perpendicular to the poling axis

&
Pages 1789-1820 | Received 05 Aug 2003, Published online: 21 Feb 2007
 

Abstract

Experimental results for cracked piezoelectric materials demonstrate that applied electric fields can enhance or inhibit crack growth, which cannot be explained via stress intensity factor K σ and energy release rate G, but may be predicted according to the fracture criterion of mechanical strain energy release rate G m. However, the G m criterion fails to predict the experimental observation that purely electric fields can drive crack growth in a poled ferroelectric ceramic. In this paper, using electric boundary conditions dependent on the crack-opening displacement, the nonlinear relation between the electric displacement at the crack faces and applied loading is given explicitly. The Fourier transform technique is employed to reduce the problem to dual-integral equations. Solving the resulting equations, expressions for the electroelastic field in the entire plane are obtained for a piezoelectric material weakened by a Griffith crack perpendicular to the poling axis. The distribution of asymptotic field and the intensity factors of electroelastic field as well as the elastic T-stress are determined. In particular, the strain intensity factor K s is suggested as a fracture criterion for piezoelectric materials, which can explain successfully relevant experimental results. Results reveal that an applied electric field tends to cause crack to open or close, depending on its positive or negative direction. A comparison of numerical results for -5H indicates that the K s criterion is superior to other fracture criteria.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant 10272043 and the Korea Institute of Science and Technology Evaluation and Planning.

Notes

‖ Email: [email protected]

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.