53
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

On vortices and phase coherence in high-Tc superconductors

, &
Pages 2331-2339 | Received 26 Feb 2004, Accepted 29 Feb 2004, Published online: 21 Aug 2006
 

Abstract

An array of Cooper paired planes will not have long-range phase coherence at any finite temperature owing to an infrared divergence of phase fluctuations when the coherence length perpendicular to the plane is small enough to prevent leakage of the superconducting order parameter within the planes. The phase correlations decay in a sufficiently slow manner to provide enough local phase coherence to make possible the nucleation of vortices. The planes then acquire Kosterlitz–Thouless topological order with its intrinsic rigidity and concomitant superfluidity. We conclude that the high-temperature superconducting cuprates are topologically ordered superconductors rather than phase-ordered superconductors since the large insulating layer between the copper–oxygen planes prevents effective leakage of the superfluid order parameter. For low enough superfluid densities, as in the underdoped cuprates studied by Uemura, the transition temperature T c will be proportional to the superfluid density corresponding to vortex–antivortex unbinding, and not to the disappearance of the Cooper pairing amplitude. Above T c, but below the Bardeen–Cooper–Schrieffer pairing temperature T p, we shall have a dephased Cooper pair fluid that is a vortex–antivortex liquid. Since the superconductivity is effectively two dimensional, there can be a large difference between T p and T c, as observed in the underdoped cuprates. The ac and dc conductivities measured by Corson et al. in this region are those corresponding to flux flow. Furthermore there will be vortices over a large temperature region above T c which will lead to a Nernst vortex-like response and there will be a measurable depairing field

above T c as evidenced by recent experiments by Wang et al.

Acknowledgements

We would like to thank M. Beasley, T. Cuk, B. Gardner and A. Silbergleit for interesting and helpful discussions. Bogdan A. Bernevig was supported through the Stanford Graduate Fellowships program. Zaira Nazario was supported by The School of Humanities and Sciences at Stanford University. David I. Santiago was supported by a National Aeronautics and Space Administration grant NAS 8-39225 to Gravity Probe B.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.