2,004
Views
312
CrossRef citations to date
0
Altmetric
Original Articles

Fullerene-related structure of commercial glassy carbons

Pages 3159-3167 | Received 17 Dec 2003, Accepted 30 Mar 2004, Published online: 22 Aug 2006
 

Abstract

Glassy carbon is a technologically important material widely used in products such as electrodes and high-temperature crucibles. However, the properties which make glassy carbon so valuable in these applications are poorly understood, since its detailed atomic structure is not known. A model for the structure of glassy carbon put forward many years ago has gained wide acceptance, but appears to suffer from serious shortcomings. In particular, it fails to account for the chemical inertness of the carbon, and for its high proportion of closed porosity. Here I show, using high-resolution transmission electron microscopy, that glassy carbons obtained from commercial suppliers contain a high proportion of fullerene-related structures. On the basis of these observations, models are put forward for the structures of ‘low-temperature’ and ‘high-temperature’ glassy carbons which incorporate non-six-membered rings.

Acknowledgement

The author is grateful to Rainer Dübgen and Norio Iwashita for supplying samples of glassy carbon and for helpful comments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.