212
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Design perspectives for creep-resistant magnesium die-casting alloys

, &
Pages 3843-3860 | Received 24 Mar 2004, Published online: 17 Aug 2006
 

Abstract

The microstructure of die-cast magnesium alloys is highly non-uniform, which leads to a non-uniform distribution of the solidus/homologous temperature in the α(Mg) phase and a non-uniform distribution of deformation stresses and strains in the specimen during creep testing. Experimental observations suggest that significant creep deformation occurs in the α(Mg) phase in and adjacent to the eutectic regions while deformation in the primary α(Mg) dendrites is less pronounced. This article addresses the effect of the non-uniform as-cast microstructure on the creep resistance of die-cast magnesium alloys. Computational thermodynamic simulations were carried out to determine solute segregation, solidus temperature, and the corresponding homologous temperature distribution in the α(Mg) phase. Transmission electron microscopy studies provided evidence of non-uniform creep deformation in the creep-tested specimens. The results suggest that the creep resistance of magnesium alloys is determined by the weakest aggregate and/or phase in the alloy, viz., the α(Mg) phase in and adjacent to the eutectic regions. Microstructural design efforts that increase the homologous temperature or reinforce the eutectic α(Mg) phase hold significant promise for increasing the creep resistance of magnesium alloys.

Acknowledgements

Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technology, Lightweight Vehicle Materials Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors thank J.A Horton and R.W. Swindeman for reviewing the article and M.L. Atchley for preparing the manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.