1,059
Views
64
CrossRef citations to date
0
Altmetric
Original Articles

Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu

, &
Pages 3617-3635 | Received 05 May 2003, Accepted 08 Jul 2004, Published online: 22 Aug 2006
 

Abstract

Performance degradation of structural steels in nuclear environments results from the formation of a high number density of nanometre-scale defects. The defects observed in copper-based alloys are composed of vacancy clusters in the form of stacking fault tetrahedra and/or prismatic dislocation loops that impede the motion of dislocations. The mechanical behaviour of irradiated copper alloys exhibits increased yield strength, decreased total strain to failure and decreased work hardening as compared to their unirradiated behaviour. Above certain critical defect concentrations (neutron doses), the mechanical behaviour exhibits distinct upper yield points. In this paper, we describe the formulation of an internal state variable model for the mechanical behaviour of such materials subject to these (irradiation) environments. This model has been developed within a multiscale materials-modelling framework, in which molecular dynamics simulations of dislocation–radiation defect interactions inform the final coarse-grained continuum model. The plasticity model includes mechanisms for dislocation density growth and multiplication and for irradiation defect density evolution with dislocation interaction. The general behaviour of the constitutive (homogeneous material point) model shows that as the defect density increases, the initial yield point increases and the initial strain hardening decreases. The final coarse-grained model is implemented into a finite element framework and used to simulate the behaviour of tensile specimens with varying levels of irradiation-induced material damage. The simulation results compare favourably with the experimentally observed mechanical behaviour of irradiated materials.

Acknowledgements

This work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48, funded by the US DOE NEPO Project 3-13.2.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.