74
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Unified framework for dislocation-based defect energetics

, &
Pages 917-929 | Received 15 Jul 2004, Accepted 07 Sep 2004, Published online: 21 Aug 2006
 

Abstract

We present a unified framework for the calculation of dislocation-based defect energetics, and then validate this approach by considering both the self and interaction energies of combinations of grain boundaries and cracks. We obtain in a straightforward manner well-known quantities, such as the energy of a low-angle tilt boundary, as well as other lesser known results, including boundary/boundary and crack/boundary interaction energies, from a common formalism based on linear elasticity. This approach, in combination with simple dimensional analysis, permits the rapid calculation of defect energetics.

Acknowledgements

The authors would like to acknowledge many helpful discussion with Professor T. Delph and Mr. C. Lowe. J. Rickman would like to thank the National Science Foundation for its support under grant number DMR-9975384. This research has been supported, in part (J.V.), by the U.S. Department of Energy under contract No. DE-FG05-95ER14566. The work of R. LeSar was performed under the auspices of the United States Department of Energy (US DOE under contract W-7405-ENG-36) and was supported by the Division of Materials Science of the Office of Basic Energy Sciences of the Office of Science of the US DOE.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.