248
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Dynamical mean-field theory: from quantum impurity physics to lattice problems

Pages 1877-1889 | Received 02 Dec 2004, Accepted 16 Jan 2005, Published online: 29 Nov 2010
 

Abstract

Since the first investigation of the Hubbard model in the limit of infinite dimensions by Metzner and Vollhardt, dynamical mean-field theory (DMFT) has become a very powerful tool for the investigation of lattice models of correlated electrons. In DMFT the lattice model is mapped on an effective quantum impurity model in a bath which has to be determined self-consistently. This approach led to significant progress in our understanding of typical correlation problems such as the Mott transition; furthermore, the combination of DMFT with ab-initio methods now allows for a realistic treatment of correlated materials. The focus of these lecture notes is on the relation between quantum impurity physics and the physics of lattice models within DMFT. Issues such as the observability of impurity quantum phase transitions in the corresponding lattice models are discussed in detail.

Acknowledgements

We thank Krzysztof Byczuk, Alex Hewson, Marcus Kollar, Thomas Pruschke, Dieter Vollhardt, and Matthias Vojta for helpful discussions. This research was supported by the DFG through SFB 484.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.