944
Views
136
CrossRef citations to date
0
Altmetric
Original Articles

On the role of weak interfaces in blocking slip in nanoscale layered composites

, &
Pages 3537-3558 | Received 30 Sep 2005, Accepted 02 Mar 2006, Published online: 21 Feb 2007
 

Abstract

Layered composites of Cu/Nb achieve very high strength levels when the individual layer thicknesses are 1–10 nm, attributable to the interfaces acting as barriers to slip. Atomistic models of Cu/Nb bilayers were used to explore the origins of this resistance. The models clearly show that dislocations placed near an interface experience an attraction toward the interface, regardless of the sign of the Burgers vector or the material in which it is placed. This attraction is caused by shear of the interface induced by the stress field of the dislocation. Furthermore, the dislocation, upon reaching the interface, is absorbed by it in the sense that the core spreads within the interface. We develop a model, using a fractional dislocation approach, which provides an estimate of the strength of the attraction as a function of distance from the interface and also the dependence of the interaction on the type of dislocation. A screw dislocation is much more effective in shearing the interface, and the resulting attractive forces on screws are larger than for edge dislocations.

Acknowledgements

The authors would like to acknowledge the contributions to the Cu–Nb potential made by M. J. Demkowicz. This work was supported by the Office of Basic Energy Sciences of the US Department of Energy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.