145
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Magnetoelastic modelling of composites containing randomly dispersed ferromagnetic particles

&
Pages 4367-4395 | Received 28 Apr 2005, Accepted 19 Mar 2006, Published online: 21 Feb 2007
 

Abstract

Coupled magnetoelastic behaviour is investigated for two-phase composites containing randomly dispersed ferromagnetic particles under both magnetic and mechanical loading. The pair-wise particle interactions for magnetic field and elastic field are first defined by the solution for two particles embedded in the infinite domain, which is explicitly solved by the Green's function technique. By integrating the interactions from all other particles in the representative volume element, the homogenized magnetic and elastic fields are then obtained. Effective magnetostriction due to the magnetic interaction force is further derived. Without consideration of magnetic loading, this micromechanical model provides an effective elasticity with the pair-wise particle interactions. By dropping the interaction term, this model is reduced into Mori–Tanaka's model. Finally, magnetoelasticity is numerically solved by considering the magnetomechanical coupling effect. It is predicted that the effective Young's modulus and shear modulus decrease along with the increase of magnetic loading for random composites.

Acknowledgements

This work is sponsored by the National Science Foundation under grant numbers CMS-0084629 and DMR-0113172. The support is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.