161
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Thermal conductivity of an alloy in relation to the observed cooling rate and glass-forming ability

, , &
Pages 1845-1854 | Received 04 Jul 2006, Accepted 30 Sep 2006, Published online: 12 Mar 2007
 

Abstract

The glass-forming ability (GFA) of an alloy in this case is the largest diameter of a rod which can be cast fully glassy. The present work shows that the thermal conductivity of a liquid alloy has a strong effect on GFA by influencing the cooling rate upon mould casting. The initial cooling rates (for the first 70–100 K of temperature decrease), obtained for Cu-, Zr- and Au-based bulk glass-forming alloys in the liquid state, are found to scale linearly with the thermal conductivities of the liquid base elements. However the low cooling rate found for Ni-based alloy suggests that the heat transfer at the melt–mould interface may also influence the cooling rate. The low thermal conductivity of Ni-based alloys and the correspondingly low cooling rate obtained compared to Cu-based counterparts explains their lower GFA. In the literature, many factors influencing the GFA of alloys have been discussed. To these factors, the present study adds the thermal conductivity of the molten alloy and the melt–mould heat-transfer coefficient. Moreover, the cooling rate depends on temperature and, thus, the critical cooling rate itself is not a suitable parameter for indicating GFA. The cooling can be better described by an appropriate fitting of the cooling curve to an exponential temperature decay function.

Acknowledgement

This work was supported by the Research and Development Project on Advanced Metallic Glasses, Inorganic Materials and Joining Technology as well as by the Grant-in-Aid (Wakate B) of Ministry of Education, Sports, Culture, Science and Technology, Japan N: 16760559. The authors sincerely thank A.L. Greer for English grammar and style correction. Au based alloy composition was found in Citation30.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.