116
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Oscillating cracks in glassy films on silicon substrates

, , , &
Pages 4893-4906 | Received 28 Mar 2007, Accepted 09 Jul 2007, Published online: 28 Sep 2007
 

Abstract

Cracks that propagate with near-perfect sinusoidal form are reported in amorphous silicon-rich silica films deposited onto (001) silicon substrates by plasma-enhanced chemical vapour deposition and subjected to thermal annealing. The cracks are shown to result from high tensile stresses that develop in the film during thermal annealing at temperatures in the range up to 700°C, a process shown to be correlated with the loss of hydrogen from the films. Two distinct modes of crack propagation are reported: straight cracks that propagate along directions parallel to [100] cube-edge directions in the substrate, and oscillating cracks that propagate with sinusoidal form parallel to [110] diagonal directions. Sections through the cracks show that the oscillating cracks have a complex three-dimensional structure that extends through the glassy film and into the underlying silicon substrate. This involves a correlated oscillation between the crystallographic orientation of the crack in the surface plane and that of the crack extension into the substrate. Whereas a complete theoretical treatment of this behaviour would be extremely complicated, a simple theory is developed to demonstrate that an oscillating crack has a minimum energy per unit length for a particular wavelength and amplitude that depends upon the physical parameters of both film and substrate. The energy at this minimum is shown to be lower than that of a straight crack for certain parameter ranges so that the oscillating geometry is preferred.

Acknowledgements

The authors acknowledge financial support from the NANO MNRF for access to focused ion beam (FIB) analysis facilities and Dr. Damien McGrouther of UNSW for technical assistance with the FIB and associated image processing. Dr. Simon Ruffell and Ms. Verena Tobias are also acknowledged for their assistance with hardness measurements.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.