397
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Formation mechanism of nanostructures in austenitic stainless steel during equal channel angular pressing

, , , , &
Pages 4949-4971 | Received 15 Mar 2007, Accepted 20 Jul 2007, Published online: 28 Sep 2007
 

Abstract

An ultra-low carbon austenitic stainless steel was successfully pressed from one to eight passes by equal channel angular pressing (ECAP) at room temperature. By using X-ray diffraction, optical microscopy and transmission electron microscopy, the microstructural evolution during ECAP was investigated to reveal the formation mechanism of strain-induced nanostructures. The refinement mechanism involved the formation of shear bands and deformation twins, followed by the fragmentation of twin lamellae, as well as successive martensite transformation from parent austenitic grains with sizes ranging from microns to nanometres through the processes γ(fcc) → ε(hcp) → α′(bcc). After pressing for eight passes, two types of nanocrystalline grains were achieved: (a) nanocrystalline austenite with a mean grain size of ∼31 nm and (b) strain-induced nanocrystalline α′-martensite with a size of ∼74 nm. The formation mechanisms are discussed in terms of microstructural subdivision via deformation twinning and martensite transformation.

Acknowledgements

This research was financially supported by the National Natural Sciences Foundation of China (NSFC) under grant Nos. 50701047, 50371090 and 50471082. Zhang ZF would like to thank the financial support of “Hundred of Talents Project” by the Chinese Academy of Sciences, and the National Outstanding Young Scientist Foundation under grant No. 50625103.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.