148
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Residual stresses in ceramic-to-metal joints: diffraction measurements and finite element method analysis

, , , , , , & show all
Pages 5551-5563 | Received 13 Feb 2007, Accepted 02 Sep 2007, Published online: 12 Nov 2007
 

Abstract

The residual stress (RS) field in ceramic–metal diffusion bonds has been studied by spatial-resolved neutron strain scanning. Strain profiles were directly determined by neutron diffraction along selected lines perpendicular to the bonding interface of cube-shaped Ni/Si3N4 specimens. Finite element method (FEM) calculations were carried out to simulate the joining process and residual strains have been obtained among the whole body of specimens. The simulations were validated by comparison with the experimental strain data obtained by neutron and (previous) X-ray diffraction along some particular line of the specimen. Finally, the RS field across the whole sample was obtained from the FEM-calculated strain field, showing that neutron strain scanning combined with FEM analysis is a very useful technique to study the RS map in silicon nitride–metal diffusion bonds at both sides of the joining interface. Maxima of the axial stress were found at the lateral surface and close to the joining interface, being tensile for both ceramic and nickel. On the other hand, the largest radial stress at the joining interface was found at the centre of the specimen on the ceramic side. From the point of view of FEM analysis, it is shown that in order to simulate the joining process of nickel and silicon nitride, nickel must be considered as a ductile material having strain hardening and Si3N4 must be considered as purely elastic material having a nearly temperature-independent elastic modulus.

Acknowledgements

This work was supported by the Spanish Ministry of Science and Education under the coordinate projects MAT2003-06147-C01&C02 and MAT2004-04921. The authors are grateful to ILL for the provision of beam time.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.