259
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Modelling the diffusion of self-interstitial atom clusters in Fe–Cr alloys

, &
Pages 21-29 | Received 11 Apr 2007, Accepted 16 Aug 2007, Published online: 07 Dec 2007
 

Abstract

The results of molecular dynamics simulations of the diffusion of self-interstitial atom clusters in Fe–Cr alloys of different Cr content are presented. It is shown that, with increasing Cr concentration, the cluster diffusivity first decreases and then increases, in accordance with the predictions of a model developed recently and based on molecular static calculations. The minimum diffusivity is found at about 10 at% Cr for small clusters and it shifts towards lower concentration with increasing cluster size. The migration energy of SIA clusters is found to lie in between the binding energy of a Cr atom with a crowdion and half of it. This indicates that the mechanism of cluster migration is via the movement of individual crowdions from one Cr atom to another. The values obtained statically are much higher and are argued to be more reliable due to better sampling of different configurations in a bigger simulation box.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.