1,292
Views
173
CrossRef citations to date
0
Altmetric
Original Articles

Strength, plasticity and brittleness of bulk metallic glasses under compression: statistical and geometric effects

, &
Pages 71-89 | Received 20 Mar 2007, Accepted 20 Oct 2007, Published online: 07 Dec 2007
 

Abstract

To investigate the flaw sensitivity and reliability of bulk metallic glasses (BMGs), compressive testing was performed on a statistically significant number of specimens. Despite the fact that BMGs exhibit little or no macroscopic plasticity before failure (similar to other brittle materials), we observe surprisingly high uniformity in compressive strength. Weibull analysis was employed to study the statistical dispersion in strength, giving very high Weibull moduli of about 25 for an intrinsically brittle glass, and near 75 for an intrinsically malleable one. This high uniformity is encouraging for the use of BMGs in structural applications. Furthermore, we illustrate that subtle imperfections in the test geometry (i.e. miscut or deviations from orthogonality) dramatically affect the compression response. In brittle glasses these act as failure-critical flaws, whereas in malleable glasses they constrain shear bands, lead to tilting and bending during testing, and give rise to misleading macroscopic measurements of plastic deformation.

Notes

†We reserve the term “ductile” for materials that can sustain plastic deformation in tension.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.