91
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

The effect of Bi content on the thermal stability and crystallization of Se–Te chalcogenide glass

, &
Pages 1099-1112 | Received 28 Oct 2007, Accepted 13 Mar 2008, Published online: 17 Aug 2009
 

Abstract

Glass formation and devitrification of intermediate alloys in the Se–Te–Bi system were studied by differential scanning calorimetry. A comparison of various simple quantitative methods to assess the level of stability of the glassy materials in the above-mentioned system is presented. All of these methods are based on characteristic temperatures, such as the glass transition temperature, T g, the onset temperature of crystallization, T in, the temperature corresponding to the maximum crystallization rate, T p, or the melting temperature, T m. In this work, a kinetic parameter, K r(T), is added to the stability criteria. The thermal stability of several compositions of Se–Te–Bi was evaluated experimentally and correlated with the activation energies of crystallization by this kinetic criterion and compared with those evaluated by other criteria. All the results confirm that the thermal stability decreases with increasing Bi content in this glassy system. The crystallization results are analysed and the activation energy and mechanism of crystallization characterized.

Acknowledgment

The authors are grateful to Al-Azhar University, Faculty of Science Physics Department, Assiut branch, for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.