155
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Newtonian viscous creep in Ti–3Al–2.5V

, , &
Pages 1357-1367 | Received 01 Feb 2008, Accepted 20 Apr 2008, Published online: 02 Jul 2008
 

Abstract

Biaxial creep tests were performed on fine-grained Ti–3Al–2.5V tubing at 823 and 873 K in the stress range σ/E  = 1.7  × 10−4 to σ/E  = 5.9  × 10−4. Subsequently, the creep data were analysed to determine the stress exponent and activation energy. A stress exponent value of 1 and an activation energy equal to that for grain boundary diffusion were suggestive of a Coble creep-controlled deformation regime. However, discrepancy between the experimental creep rates and Coble creep model predictions along with subsequent observation of deformed microstructures decorated with slip bands implied the operation of a different viscous creep mechanism. A slip band model proposed by Spingarn and Nix was found to provide a better description of the experimental strain rates rather than the conventional viscous creep mechanisms. High-resolution transmission electron microscopy studies confirmed the nature of these bands.

Acknowledgements

We gratefully acknowledge the grant # DMR-0412583 from the US National Science Foundation for supporting this work. The help extended by S. Johansson and G. Ramos in sample preparation is acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.