89
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

The Schrödinger–Newton equation as a possible generator of quantum state reduction

&
Pages 1659-1671 | Received 31 Mar 2008, Accepted 05 Jun 2008, Published online: 28 Jul 2008
 

Abstract

It has been suggested by Diósi and Penrose that the occurrence of quantum state reduction in macroscopic objects is related to a manifestation of gravitational effects in quantum mechanics. Although within Penrose's framework the dynamics of the quantum state reduction is not prescribed, it was suggested that the so-called Schrödinger–Newton equation can be used to at least identify the resulting classical end states. Here we analyse the extent to which the Schrödinger–Newton equation can be used as a model to generate a full, time-dependent description of the quantum state reduction process. We find that when supplied with an imaginary gravitational potential, the Schrödinger–Newton equation offers a rationalization for some of the hitherto unexplained characteristics of quantum state reduction. The description remains incomplete however, because it is unclear how to fully recover Born's rule.

Acknowledgements

We thank Jan Zaanen for numerous discussions and gratefully acknowledge support from the Dutch Science Foundation FOM.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.