165
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Microstructure of annealed Ti48.5Ni(51.5–x)Cux (x = 6.2–33.5) thin films

, &
Pages 2427-2438 | Received 12 May 2008, Accepted 17 Jul 2008, Published online: 26 Sep 2008
 

Abstract

(Ni, Cu)-rich Ti–Ni–Cu amorphous films with a Cu content of 6.2–33.5 at. % formed by sputtering were annealed at 773, 873 and 973 K for 1 h and their microstructures investigated. Two types of precipitate were observed in the annealed films: a Ti(NiCu)2 phase for the Ti48.5Ni40Cu11.5, Ti48.6Ni35.9Cu15.5, Ti48.3Ni28.4Cu23.3 and Ti48.3Ni23.9Cu27.8 films, plus a TiCu phase for the Ti48.5Ni18Cu33.5 films. These precipitates were found to have coherency with the B2 matrix in the films annealed at 773 K and were densely distributed within the grains. However, in the films annealed at 873 K, their size increased 10-fold and their density decreased. Annealing at 973 K promoted grain-boundary precipitation and, accordingly, the density of the precipitates in the grain interiors decreased. On the other hand, the annealed Ti48.9Ni44.9Cu6.2 films showed no precipitates in their grain interiors, but the number of grain-boundary precipitates increased with increasing annealing temperature. It was also found that grain size decreased with increasing Cu content and was significantly decreased for the Ti48.5Ni18Cu33.5 films.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.