1,003
Views
62
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamics simulation of diffusion in supercooled Cu–Zr alloys

, , &
Pages 109-126 | Received 02 Jul 2008, Accepted 16 Oct 2008, Published online: 21 Jan 2009
 

Abstract

Molecular dynamics (MD) simulations of diffusion in Cu–Zr alloys in their liquid and supercooled liquid states were performed using a recently developed Finnis–Sinclair many-body interatomic potential. To help assess how well the interatomic potential describes the energetics of the Cu–Zr system, the liquid structure determined by MD simulations was compared with wide-angle X-ray scattering measurements of the liquid structure for a Cu64.5Zr35.5 alloy. Diffusion was examined as a function of composition, pressure and temperature. The simulations reveal that the diffusion exhibits strong compositional dependence, with both species exhibiting minimum diffusivities at ∼70% Cu. Moreover, the MD simulations show that the activation volumes for Zr and Cu atoms exhibit a maximum near 70% Cu. Evidence is obtained that the glass transition temperature also changes strongly with composition, thereby contributing to the diffusion behaviour. The relationship between this minimum in diffusion and the apparent best glass-forming composition in the Cu–Zr system is discussed.

Acknowledgements

We would like to thank Bob Hyers and Stacy Canepari of the University of Massachusetts, Amherst and Jan Rogers of NASA Marshall Space Flight Center, Huntsville, Alabama for their contributions to collecting the liquid density and scattering data. Work at the Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. The high-energy X-ray work at the MUCAT sector of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.