625
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Temperature-dependent elastic moduli of lead telluride-based thermoelectric materials

, , , , , , & show all
Pages 143-167 | Received 12 Sep 2008, Accepted 05 Nov 2008, Published online: 21 Jan 2009
 

Abstract

In the open literature, reports of mechanical properties are limited for semiconducting thermoelectric materials, including the temperature dependence of elastic moduli. In this study, for both cast ingots and hot-pressed billets of Ag-, Sb-, Sn- and S-doped PbTe thermoelectric materials, resonant ultrasound spectroscopy (RUS) was utilized to determine the temperature dependence of elastic moduli, including Young's modulus, shear modulus and Poisson's ratio. This study is the first to determine the temperature-dependent elastic moduli for these PbTe-based thermoelectrics, and among the few determinations of elasticity of any thermoelectric material for temperatures above 300 K. The Young's modulus and Poisson's ratio, measured from room temperature to 773 K during heating and cooling, agreed well. Also, the observed Young's modulus, E, versus temperature, T, relationship, E(T) = E 0(1–bT), is consistent with predictions for materials in the range well above the Debye temperature. A nanoindentation study of Young's modulus on the specimen faces showed that both the cast and hot-pressed specimens were approximately elastically isotropic.

Acknowledgements

The authors acknowledge the financial assistance of the U.S. Department of Energy Grant DE-FC26-04NT42281 and Office of Naval Research MURI Grant number N000140310789. The research work at the High Temperature Materials Laboratory was sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Freedom CAR and Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725. One of the authors (F. Ren) would like to acknowledge the financial support from the Higher Education Research Experience program sponsored by the Oak Ridge National Laboratory during his tenure at the High Temperature Materials Laboratory.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.