104
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Phase evolution in nanocrystalline silicon films: Hydrogen dilution and the cone kinetics model

, &
Pages 2461-2468 | Received 06 Nov 2008, Accepted 22 Mar 2009, Published online: 11 Oct 2010
 

Abstract

Our cone kinetics model of heterogeneous thin film growth explains the evolution of the crystalline inclusions that form during chemical vapor deposition (CVD) growth of silicon films. Various morphologies, including isolated crystallites and conical nanocrystalline formations, form during plasma-enhanced (PE) and other CVD techniques when isotropic growth is coupled with the point nucleation of a second phase with a higher growth rate. Cone angles are determined by the relative growth rates alone. By generalizing the physics of cone formation, we create a qualitative phase diagram that predicts film morphology from two factors during deposition: the relative amorphous and crystalline growth rates and the rate of crystallite nucleation. It is well known that both of these factors are influenced by the H-dilution of the film precursor gases. Analysis of the statistics of cone geometries and densities in published experimental data on PECVD-grown nanocrystalline silicon shows that the cone angle increases monotonically with H-dilution. In the context of the cone kinetics model, this implies that increased H-dilution results in an increase of the ratio of the nanocrystalline silicon growth rate (νnc) to the amorphous silicon growth rate (νa). At a specific H-dilution, νnca exceeds unity and nanocrystalline cone formation results.

Acknowledgements

We gratefully acknowledge support from the US DOE under Contract DE-AC36-08GO28308, and from a United Solar Ovonic subcontract from their DOE Solar America Initiative Contract DE-FC36-07GO17053. We also acknowledge helpful discussions with Ina Martin and Chun-Sheng Jiang (NREL), Baojie Yan (United Solar), and Antonin Fejfar (Czech Academy of Sciences). The pioneering works by the late Walter Spear on both doping and filament switching in amorphous silicon have been extremely valuable and a great influence on our own research over the years.

Notes

Note

1. Note in proof: The validity of Equation (Equation1) has recently been confirmed by measurements of amorphous and coalesced-nanocrystalline silicon deposition rates at identical growth conditions, for which a cone angle was also measured. [see J.A. Stoke, L.R. Dahal, J. Li, N.J. Podraza, X. Cao, X. Deng, and R.W. Collins, Proc. 33rd IEEE Photovoltaics Specialists Conference, San Diego CA USA, May 11–16, 2008 (IEEE, Piscataway, NJ, 2008) Art. No. 413.]

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.