168
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Phase field modeling of domain structures and P–E hysteresis in thin ferroelectric layers with deadlayers

Pages 89-101 | Received 14 Nov 2008, Accepted 03 May 2009, Published online: 15 Jan 2010
 

Abstract

The phase field method was used for the simulation of the domain structure evolution and polarization–applied field hysteresis in thin ferroelectric layers with deadlayers. The simulation demonstrated that the hysteresis loop shape depends on the thickness of the deadlayer and the strength of electrostatic interactions. The systems with a thin deadlayer and/or weaker electrostatic interactions produce a rectangular loop with a large remnant polarization value. The systems with a thicker deadlayer and/or stronger electrostatic interactions produce dumbbell-shaped double loops with an approximately zero remnant polarization. It is shown that the transformation from a poled single-domain state to a polydomain state can produce either the 180° domain structure when elastic interactions in the layer are weak or the 90° c/a structure when elastic interactions are strong. It is demonstrated that the type of the domain structure produced by the single-domain to polydomain transformation can affect the possibility of further changes in the domain structure in a varying applied field, and that 180° domain structures produced by this transformation can have a columnar morphology instead of stripe domains.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.