794
Views
59
CrossRef citations to date
0
Altmetric
Original Articles

Reactions between a 1/2⟨111⟩ screw dislocation and ⟨100⟩ interstitial dislocation loops in alpha-iron modelled at atomic scale

, &
Pages 1019-1033 | Received 15 Apr 2009, Accepted 01 May 2009, Published online: 08 Sep 2009
 

Abstract

Interstitial dislocation loops with Burgers vector of type are observed in α-iron irradiated by neutrons or heavy ions, and their population increases with increasing temperature. Their effect on motion of a edge dislocation was reported earlier Citation1. Results are presented of a molecular dynamics study of interactions between a screw dislocation and loops in iron at temperature in the range 100 to 600 K. A variety of reaction mechanisms and outcomes are observed and classified in terms of the resulting dislocation configuration and the maximum stress required for the dislocation to break away. The highest obstacle resistance arises when the loop is absorbed to form a helical turn on the screw dislocation line, for the dislocation cannot glide away until the turn closes and a loop is released with the same Burgers vector as the line. Other than one situation found, in which no dislocation–loop reaction occurs, the weakest obstacle strength is found when the original loop is restored at the end of the reaction. The important role of the cross-slip and the influence of model boundary conditions are emphasised and demonstrated by examples.

Acknowledgements

This work was carried out within the framework of the European Fusion Development Agreement (EFDA). It was also supported by grant GR/S81162/01 from the UK Engineering and Physical Sciences Research Council; grant F160-CT-2003-508840 (‘PERFECT’) under programme EURATOM FP-6 of the European Commission; and partly by the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. DT thanks EDF for use of high performance computing facilities.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.