172
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Ultrasonic and FT-IR studies on Bi2O3–Er2O3–PbO glasses

, &
Pages 2213-2224 | Received 04 Dec 2008, Accepted 06 May 2009, Published online: 26 Aug 2009
 

Abstract

Glasses in the 90Bi2O3–(10−x)Er2O3xPbO (x = 3, 5, 7, 9 and 10 mol%) system have been prepared by the melt-quenching technique. Elastic properties and FT-IR spectroscopic studies have been employed to study the role of PbO in the structure of the investigated system. Elastic properties and Debye temperature were recorded using sound wave velocity measurements at 4 MHz at room temperature. The results showed that density increased and molar volume decreased, while both sound velocities increased with an increase in x. Infrared spectra of the glasses revealed that the bismuthate network is affected by an increase in PbO content. The results are interpreted in terms of the conversion of [BiO6] into [BiO3] structural units, indicating that Pb ions have been substituted for erbium ions as tetrahedral network formers. The elastic moduli increased with increasing PbO content due to the increased average bond strength and degree of connectivity, as a direct effect of the increase in [BiO3] structural units.

Acknowledgement

The authors wish to dedicate this research paper to the memory of late Professor Dr. M.A. Sidkey of the National Institute for Standards who died during the course of this study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.