92
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Numerical solution for curved crack problem in elastic half-plane using hypersingular integral equation

, &
Pages 2239-2253 | Received 10 Feb 2009, Accepted 10 May 2009, Published online: 26 Aug 2009
 

Abstract

A hypersingular integral equation for the curved crack problems of an elastic half-plane is introduced. Formulation of the equation is based on the usage of a modified complex potential. The potential is generally expressed in the form of a Cauchy-type integral. The modified complex potential is composed of the principal part and the complementary part. The principal part of the complex potential is actually equivalent to the original complex potential for the curved crack in an infinite plate. The role of the complementary part is to eliminate the boundary traction along the boundary of the half-plane caused by the principal part. From the assumed boundary traction condition, a hypersingular integral equation is obtained for the curved crack problems of an elastic half-plane. The curve length coordinate method is used to obtain a final solution. Several numerical examples are presented that prove the efficiency of the suggested method.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.