1,399
Views
108
CrossRef citations to date
0
Altmetric
Original Articles

Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass

, , , , , , , , , , , & show all
Pages 141-157 | Received 28 Mar 2009, Accepted 09 Nov 2009, Published online: 15 Jan 2010
 

Abstract

Cluster-spin glass and ferroelectric relaxors have been observed in defect-containing ferromagnetic systems and ferroelectric systems, respectively. However, it is unclear whether or not an analogous glass state exists in the physically parallel ferroelastic (or martensitic) systems. In the 1990s, theoretical studies suggested that premartensitic tweed could be viewed as a strain glass. However, there has been no experimental verification of this hypothesis. In this paper, we provide an experimental test of this hypothesis by measuring the possible glass signatures in two well-known premartensitic tweed systems prior to their martensitic transformation: one Ni63Al37 and the other Ti50Ni47Fe3 martensitic alloy. Our experiments show that no glass signatures exist for the premartensitic tweed in both systems. There is no mechanical susceptibility/modulus anomaly in the tweed temperature regime, suggesting no glass transition exists. The tweed remains ergodic, inconsistent with a frozen glass. These two critical experiments show that premartensitic tweed is not a frozen glass state. We demonstrate that strain glass exists in ferroelastic/martensitic systems but only in defect-containing ferroelastic/martensitic systems with defect concentration exceeding a critical value. This strain glass is a mechanical analogue of cluster-spin glass or ferroelectric relaxors, and possesses all the features of a glass. We further show that the tweed is equivalent to an ‘unfrozen state’ of a strain glass. Finally, we demonstrate that the microscopic origin of the strain glass can be easily understood in analogy with the behavior of a ‘defect-containing domino array’.

Acknowledgements

The authors thank A. Saxena, T. Lookman and Y.Z. Wang for stimulating discussions. Y. Wang acknowledges the financial support under a JSPS fellowship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.