160
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Plastic deformation by conservative shear-coupled migration of tilt boundaries with intergranular nano-cracks or precipitates

, , &
Pages 3743-3756 | Received 02 Mar 2009, Accepted 02 Jun 2009, Published online: 04 May 2010
 

Abstract

We present molecular dynamics (MD) simulations of the shear-coupled migration (SCM) behaviour of symmetrical tilt boundaries perturbed by the presence of nano-cracks or nano-precipitates lying on the boundary plane. The simulations have been performed for copper bicrystals at room temperature (300 K). The tilt boundary gets pinned by the crack tip or precipitates; shear-coupled migration occurs only ahead of the pinning points. Bulging of the tilt boundary reduces the shear stress on the boundary surface near the pinning points. In the case of cracks, the local deviation of the boundary from the crack plane close to the crack tip hinders mode II crack propagation; in fact, crack healing is observed in some cases. The applied stress grows until depinning of the boundary takes place by SCM bulging or by the combined action of SCM with another deformation mechanism (emission of dislocations from the pinning point vicinity, grain boundary sliding).

Acknowledgements

This work was supported by the Department of Industry, Commerce and Tourism of the Basque Government (project ETORTEK inanoGUNE). A. Luque also acknowledges the Spanish Ministry of Science and Innovation and the European Social Fund (Torres Quevedo Programme).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.