347
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Mesoscale thermodynamic analysis of atomic-scale dislocation–obstacle interactions simulated by molecular dynamics

, &
Pages 1001-1018 | Received 11 Apr 2009, Accepted 15 Jun 2009, Published online: 30 Mar 2010
 

Abstract

Given the time and length scales in molecular dynamics (MD) simulations of dislocation–defect interactions, quantitative MD results cannot be used directly in larger scale simulations or compared directly with experiment. A method to extract fundamental quantities from MD simulations is proposed here. The first quantity is a critical stress defined to characterise the obstacle resistance. This mesoscopic parameter, rather than the obstacle ‘strength’ designed for a point obstacle, is to be used for an obstacle of finite size. At finite temperature, our analyses of MD simulations allow the activation energy to be determined as a function of temperature. The results confirm the proportionality between activation energy and temperature that is frequently observed by experiment. By coupling the data for the activation energy and the critical stress as functions of temperature, we show how the activation energy can be deduced at a given value of the critical stress.

Acknowledgements

This work was partially supported by the Division of Materials Sciences and Engineering and the Office of Basic Energy Sciences, US Department of Energy, under contract with UT-Battelle, LLC. It was also supported by the European project PERFECT (FI60-CT-2003-208840 and by grant GR/S81162/01 from the UK Engineering and Physical Sciences Research Council.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.