1,187
Views
101
CrossRef citations to date
0
Altmetric
Original Articles

Atomic-scale mechanisms of void hardening in bcc and fcc metals

&
Pages 945-961 | Received 28 Apr 2009, Accepted 03 Jul 2009, Published online: 30 Mar 2010
 

Abstract

Strengthening due to voids can be a significant effect of radiation damage in metals, but treatment of this by elasticity theory of dislocations is difficult when the mechanisms controlling the obstacle strength are atomic in nature. Results are reported of atomic-scale modelling to compare edge dislocation–void interaction in fcc copper and bcc iron. Voids of up to 6 nm diameter in iron and 8 nm diameter in copper were studied over the temperature range 0 to 600 K at different applied strain rates. Voids in iron are strong obstacles, for the dislocation has to adopt a dipole-like configuration at the void before breaking away. The dipole unzips at the critical stress when the dislocation is able to climb by absorbing vacancies and leave the void surface. Dislocation dissociation into Shockley partials in copper prevents dislocation climb and affects the strength of small and large voids differently. Small voids are much weaker obstacles than those in iron because the partials break from a void individually. Large voids are at least as strong as those in iron, but the controlling mechanism depends on temperature.

Acknowledgements

This work was supported by the Division of Materials Sciences and Engineering, US Department of Energy under contract with UT-Battelle, LLC; grant GR/S81162/01 from the UK Engineering and Physical Sciences Research Council; and grant F160-CT-2003-508840 (‘PERFECT’) under programme EURATOM FP-6 of the European Commission.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.